Pattern Recognition using PCA: Variables and their Geometric Relationships

Principal component analysis is a commonly used technique in multi-variate statistics and pattern recognition literature. In this post I try to merge ideas of Geometric and Algebraic interpretation of data as vectors in a vector space and its relationship with PCA. The 3 major sources used in this blog are: [1] Thomas D. Wickens (1995). The … Continue reading Pattern Recognition using PCA: Variables and their Geometric Relationships

Advertisements

Plausible Reasoning for Scientific Problems: Belief Driven by Priors and Data.

Plausible reasoning requires constructing rational arguments by use of syllogisms, and their analysis by deductive and inductive logic. Using this method of reasoning and expressing our beliefs, in a scientific hypothesis, in a numerical manner using probability theory is one of my interest. I try to condense the material from the first 4 chapters of … Continue reading Plausible Reasoning for Scientific Problems: Belief Driven by Priors and Data.

Hierarchical Linear Regression – 2 Level Random Effects Model

Regression is a popular approach to modelling where a response variable is modelled as a function of certain predictors - to understand the relations between variables. I used a linear model in a previous post, using the bread and peace model - and various ways to solve the equation. In this post, I want to fit … Continue reading Hierarchical Linear Regression – 2 Level Random Effects Model

Parameter Estimation

In statistical or mathematical models our aim is to look at the data and estimate the parameters and uncertainty of those estimations. Generally speaking, looking at a data set, we wish to choose a likelihood/noise/sampling distribution, that fits the data. A distribution requires some parameters, Θ, e.g. a normal distribution (which is a very common error/noise … Continue reading Parameter Estimation